Chapter 13 – Pythagorean (P) Scale

13.1 The Form of the P Scale

The P scale is an inverted scale reading from right to left, hence the graduations are in red. The P scale is related to the D scale such that for a number "x" on the D scale, immediately below it on the P scale we have $\sqrt{1-x^2}$. This of course is only valid for $-1 \le x \le 1$ (i.e. $|x| \le 1$), as we cannot have the square root of a negative number.

13.2 Calculating $\sqrt{1-x^2}$ (P and D scales)

(Note we must have $-1 \le x \le 1$ i.e. $|x| \le 1$ for $\sqrt{1-x^2}$ to have a real value.)

Example 1:
$$\sqrt{1-0.06^2} = 0.8$$

- 1. Set the hair line over 0.6 on the D scale.
- 2. Under the hair line read off 0.8 on the P scale as the answer.

Example 2:
$$\sqrt{1-0.08^2} = 0.6$$

- 1. Set the hair line over 0.8 on the D scale.
- 2. Under the hair line read off 0.6 on the P scale as the answer.

Note: If $y = \sqrt{1 - x^2}$ then $x = \sqrt{1 - y^2}$, thus to find $\sqrt{1 - x^2}$ we could either find x on the D scale and read $\sqrt{1 - x^2}$ off the P scale, or find x on the P scale and read $\sqrt{1 - x^2}$ off the D scale.

Exercise 13(a)

(i)
$$\sqrt{1-0.2^2} =$$
 (iii) $\sqrt{1-0.955^2} =$ (iv) $\sqrt{1-0.119^2} =$

13.3 Converting Sines to Cosines (and vise versa)

From the relationship $\sin^2 \theta + \cos^2 = 1$ we can express:

(i)
$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

(ii)
$$\cos\theta = \sqrt{1 - \sin^2\theta}$$

Thus, given the value of $\sin \theta$ we can read off directly the value of $\cos \theta$, and vise versa.

Example: $\sin 60^{\circ} = 0.866$ then $\cos 60^{\circ} = 0.5$

- 1. Set the hair line over 0.866 (i.e. $\sin 60^{\circ}$) on the D scale.
- 2. Under the hair line read off 0.5 (i.e. $\cos 60^{\circ}$) on the P scale as the answer.

Exercise 13(b)

- (i) if $\sin 35^{\circ}48' = 0.585$, then $\cos 35^{\circ}48' =$
- (ii) if $\sin 90^{\circ} = 1.000$, then $\cos 90^{\circ} =$
- (iii) if $\cos 70^{\circ} = 0.342$, then $\sin 70^{\circ} =$
- (iv) if $\cos 81^{\circ}42' = 0.1445$, then $\sin 81^{\circ}42 =$

13.4 Sines of large angels and Cosines of small angels

For sines of large angles (i.e. in the region 80 to 90) working from the S scale is very inaccurate, as you can see from a glance at this region S scale.

Take for example sin 84°, the best we could estimate using the S and D scales would be 0.994. It would be impossible to make any more accurate estimation if the questing was 84°20'. A better method is as follows:

Example: $\sin 84^{\circ}6' = 0.9947$

- 1. Set the hair line over $84^{\circ}6'$ (i.e. in the red graduations) on the S scale. ($84^{\circ}6'$ in red graduation is the same as $5^{\circ}54'$ in black).
- 2. Under the hair line read off 0.09947 on the P scale as the answer.

The same situation arises for cosines of small angels. Therefore, using the fact $\cos 5^{\circ}54' = \sin 84^{\circ}6'$ we have:

Example: $\sin 5^{\circ}54' = 0.9947$

- 1. Set the hair line over 5°54' (in black) on the S scale.
- 2. Under the hair line read off 0.09947 on the P scale as the answer.

Note:

- (a) For angles in red on the S scale, the P scale gives us the sine.
- (b) For the angle in black on the S scale, the P scale gives us the cosine.

Exercise 13(c)

(i)	$\sin 61^{\circ} =$	(iv)	$\cos 27^{\circ}48' =$
(ii)	sin 78°30' =	(v)	$\cos 14^{\circ}6' =$
(iii)	83°24' =	(vi)	$\cos 47^{\circ}48' =$

13.5 Square Roots (numbers just less than 1, 100, etc.)

The square root of numbers a little less than 1, 100, etc, can be obtained using the D and P scales to a greater degree of accuracy than in the conventional way, with the D (or C) and A (or B) scales.

Example 1:
$$\sqrt{0.911} = 0.9545$$
 (Fig 13.4)
Express $\sqrt{0.911} = \sqrt{1 - 0.089}$
 $= \sqrt{1 - 0.298^2}$

Note: We must have the form $\sqrt{1-x^2}$ to use the P scale. Thus we subtract 0.911 from 1 to obtain 0.089, and express $0.081 = (0.298)^2$ using the A and D scales.

Once we subtract 0.911 from 1, to obtain 0.089 the procedure is as follows:

- 1. Set the hair line over 0.089 (i.e. at 8.9) on the A scale.
- 2. Under the hair line read off 0.9545 on the P scale as the answer.

Example 2:
$$\sqrt{0.9755} = 0.9877$$

Express $\sqrt{0.9755} = \sqrt{1 - 0.0245}$
 $= \sqrt{1 - 0.298^2}$

- 1. Set the hair line over 0.0245 (i.e. at 2.45) on the A scale.
- 2. Under the hair line read off 0.9877 on the P scale as the answer.

Note: For $\sqrt{97.55}$ we would express it as:

$$\sqrt{100x0.9755} = 10\sqrt{0.9755}$$

and obtain $\sqrt{0.9755}$ as in example 2 i.e. = 10x0.9877

1.e. =
$$10x0.9877$$

therefore = 9.877

Exercise 13(d)

$$(i) \qquad \sqrt{0.95} =$$

(iv)
$$\sqrt{0.69} =$$

(ii)
$$\sqrt{92.5} =$$

(v)
$$\sqrt{76} =$$

(iii)
$$\sqrt{0.86} =$$

(vi)
$$\sqrt{9826} =$$

13.6 The Difference of Two Squares ($\sqrt{x^2 - y^2}$ or $x^2 - y^2$)

This is the form often encountered when using Pythagoras' Theorem to find the third side of a right triangle. We note that:

$$\sqrt{x^2 - y^2} = \sqrt{x^2 \left(1 - \frac{y^2}{x^2}\right)}$$

$$= x\sqrt{1 - \left(\frac{y}{x}\right)^2}$$

Thus, if we calculate $\frac{y}{x}$ using the C and D scales and transfer the result onto the P scale, on the D scale we

have $\sqrt{1-\left(\frac{y}{x}\right)^2}$. Then we could easily multiply by x to obtain $x\sqrt{1-\left(\frac{y}{x}\right)^2}$ (i.e. $\sqrt{x^2-y^2}$.

This answer would be read off the D scale, thus to obtain $x^2 - y^2$ we would read the answer off the A scale.

Example: $\sqrt{4.3^2 - 3.62^2} = 2.32$

Express
$$\sqrt{4.3^2 - 3.62^2} = 4.3\sqrt{1 - \left(\frac{3.62}{4.3}\right)^2}$$

= $4.3\sqrt{1 - 0.842^2}$

(evaluate $\frac{3.62}{4.3} = 0.842$ in any of the usual ways.)

- 1. Set the hair line over 0.842 on the P scale. (The = $\sqrt{1-0.842^2}$ is on the D scale under the hair line.)
- 2. Place the right index of the C scale under the hair line.
- 3. Reset the hair line over 4.3 on the C scale.
- 4. Under the hair line read off 2.32 on the D scale as the answer.

Note: If instead of $\sqrt{4.3^2 - 3.62^2}$ we required $(4.3^2 - 3.62^2)$ on the A scale as the answer.

Exercise 13(e)

(i)
$$\sqrt{8^2 - 6^2} =$$

(iv)
$$13.3^2 - 11.1^2 =$$

(ii)
$$\sqrt{91^2 - 83.5^2} =$$

(v)
$$105^2 - 98^2 =$$

(iii)
$$\sqrt{8.7^2 - 6.9^2} =$$

(vi)
$$0.45^2 - 0.39^2 =$$

13.7 Further Application of the P scale

- 1. To calculate the ordinates of an ellipse $\frac{x}{a} + \frac{y}{b} = 1$. Transpose the equation to $y = \pm b \sqrt{1 \left(\frac{x}{a}\right)^2}$ and work from the P to D scale as in 13.6.
- 2. The following tables give a few other uses of the P scale.

Example	Set the H.L. over	Under the H.L. answer	
$1-x^2$	x on P scale	on A scale	
$\frac{1}{1-x^2}$	x P	BI	
$\sqrt{(1-x^2)^3}$	x P	К	
$\frac{1}{\sqrt{1-x^2}}$	х Р	D (or CI)	
$\sqrt{1-x}$	x A	P	
$\sqrt{1-\frac{1}{x}}$	x BI	P	
$\sqrt{1-\frac{1}{x^2}}$	x CI	P	
$\sqrt{1-x^{\frac{2}{3}}}$	x K	P	

Example	Set HL Over	Under HL Place	Reset HL over	Under HL answer
$a\sqrt{1-x^2}$	Index of D scale	a on C scale	x on P scale	on C scale
$\frac{a}{\sqrt{1-x^2}}$	Index DI	a CI	x P	CI
$\frac{\sqrt{1-x^2}}{a}$	x P	a C	Index C	D

Exercise 13(f)

(i)
$$1-0.24^2 =$$

(ii) $\frac{1}{1-0.75^2} =$
(iii) $\sqrt{(1-0.9^2)^3} =$
(iv) $\frac{1}{\sqrt{1-0.43^2}} =$
(v) $\sqrt{1-0.76} =$
(vi) $\sqrt{1-\frac{1}{1.2^2}} =$
(viii) $\sqrt{1-0.83^{\frac{2}{3}}} =$
(ix) $13.1\sqrt{1-0.36^2} =$
(x) $\frac{2.1}{\sqrt{1-0.87^2}} =$
(vi) $\sqrt{1-\frac{1}{3.5}} =$
(xi) $\frac{\sqrt{1-0.17^2}}{3.95} =$

(xii)
$$\frac{2.6\sqrt{1-0.46^2}}{5.8} =$$